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EFFECT OF RANDOM MATERIAL PARAMETERS ON
NONLINEAR STEADY CREEP SOLUTIONSfY
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Abstract—An analysis is presented concerning the effect of random material parameters on nonlinear steady
creep in a 3-bar truss. Parameter randomness is in general large and is introduced through randomness in the
temperature and in the density of imperfections. Analytical and numerical results are presented on the statistical
properties of the material parameters and of the stress and velocity. It is shown that randomness in the material
parameters will on the one hand introduce only a very slight randommness in stress and on the other hand a very
significant randomness in velocity.

1. INTRODUCTION

THE scatter of data obtained from even carefully conducted creep tests on metals at elevated
temperatures is far greater than that for ordinary room temperature testing. Such scatter
is of course even more pronounced under actual service conditions. It is due to random
fluctuations in the load and temperature and to the presence of random material im-
perfections (Hoff [1]). Randomness in the load results in a “‘random input problem”, and
such problems are not the concern of this work. On the other hand, since the creep para-
meters are highly dependent on temperature, randomness in the temperature does result
in a “random parameter problem”. Some work in this area has been published (Soong and
Cozzarelli [2], Parkus [3]), and it has been found to be a significant effect ; we shall consider
this effect in the present work. The effect of random material imperfections on nonlinear
steady creep solutions is a random parameter problem which has received virtually no
attention to date, and thus we turn our attention to this problem as well.

If one can obtain accurate control over the environment during creep testing and
during actual service conditions, then the effect of randomness in load can be minimized.
On the other hand, it is more difficult to control the temperature so that, for example, it is
actually uniform. Furthermore, material imperfections are microscopic in nature and it is
virtually impossible to obtain effective control of such imperfections. Various kinds of
imperfections, such as dislocations, point defects, impurities, grain boundaries, etc. are
always present in a metal, and in numbers which are for the most part unknown. The creep
parameters are highly temperature and structure sensitive, and accordingly they vary
greatly from sample to sample and from point to point within a sample. Thus, it would
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appear that randomness in the material parameters is probably the most significant source
of the observed randomness in a creeping metal structure.

[t is well known that for creeping metals the strain depends not only on time but also
exhibits a nonlinear dependence on stress. If we hope to obtain useful statistical results
from such a complicated expression. we must confine ourselves, at least in the beginning.
to the simplest possible situation. Thus, we will assume that creep has entered the secondary
creep stage and that the steady creep strain dominates the elastic and transient creep
strains. In such a situation we may employ the widely used creep power law, which in the
one-dimensional case may be written as

&= S i

Here, o is the stress, & is the strain rate and S and # are material parameters.

Now as we have already remarked. even if the load may be considered deterministic.
randomness in the temperature and the imperfection density and consequently in the
material parameters is still generally present. Thus, we consider the parameters S and n to
be random parameters S and A, where a carat over a symbol is used here and in the sequel
to represent a random quantity. Clearly, in a structure governed by equation (1) the strain
rate is a function of these random parameters and thus ¢ is also a random quantity Z.
Furthermore, if the structure is statically indeterminate the stress will be a function of 7.
and thus ¢ will also be a random quantity 8. Accordingly. equation (1) must in general be
written as

& = Sé". {23

Equation (2) is not in a convenient form, since the units of § contain the random power #
and are thus random. Following Odqvist [4], we shall rewrite this equation as

o) i

o,

where o, is an arbitrary deterministic constant equal to a reference creep stress, and £, is a
random material parameter equal to the random creep rate obtained when § = ¢,. The
units of £, are deterministic, e.g. (hr) ™!

In general we might expect that the parameters £, and 7 would depend on both the
temperature T and the imperfection density N, and accordmgly ¢.and 7 would be correlated
random quantities. However, experimental evidence (e.g. see Dorn [5]) indicates that Thasa
negligible effect on # and conversely N has a negligible effect on &,. Thus we may as a first
approximation write

i=FT) =GN (4)

where, in accordance with experiment, F (T) is a monotonically mcreasmg function and

G(N) is monotonically decreasing. It is clear on physical grounds that T and N may be
considered independent, and it follows from equations (4) that &, and A will also be inde-
pendent.

The present paper considers the specific problem ofcreep in a 3-bar truss subjected to a
prescribed deterministic load, where the creep parameters &, and # are random processes
in space resulting from random processes T and N. The results of the analysis of this
particular statically indeterminate creep problem will serve to provide insight into the
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effect of random parameters oncreep in indeterminate structures in general. The derivation
of the governing expressions for the stresses and velocities for this truss, with arbitrary
statistics for £, and #, is presented in Section 2. This is followed in Section 3 by a discussion
of a probabilistic model based on equation (4), with T and N assumed to be independent
homogeneous random processes. It is shown that for large randomness the first order
density functions of both &, and # are lognormal. Then, the density functions and statistical
moments of the stresses and velocities are given in Section 4. The final section contains a
summary of the results obtained.

2. GOVERNING EQUATIONS

Consider a 3-bar truss subjected to a prescribed deterministic vertical load Q at point o
as shown in Fig. 1. The cross-sectional area A is taken constant and equal for all bars, but
the temperature and imperfection density and accordingly the material parameters are
random functions of the distance along the bars. We see from Fig. 1 that the coordinate y
defines points on each of the three bars, and that in particular y = 0 defines junction point o

and y = —Idefines the three supports. Using the subscripti = 1, 2, 3 to identify a particular
bar, we obtain from stress—strain relation (3)

. N 6—[_ ) iy} .

£y) = €.y) {}Q}—] i=123 (5)

where the material parameters &.(y) and #A{y), the axial stress é(y) and the axial strain
£{y) in the ith bar are in general random processes in .
Now, equilibrium in the ith bar yields the condition

é{y) = 64{0) = ¢,. (6)

Thus we see that the stresses 6, are independent of y and hence are simply random variables.
Then, equilibrium at point o gives

5'1 263 (73)
6’2+2&1 SinB:Q/EZO'{. (7b’

where 0 is the angle to bars 1 and 3, and where the reference stress o, in equation (5) has been
chosen here as Q/A.

v
Q

¥

Fi1G. 1. 3-bar truss.
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Next, geometric compatibility at point o requires

ficos 0+Bsin 0 = U ,(0) (Ra;
= U,0) (%)
—ficosi+Dsint = RO (8¢l

where & and  are the horizontal and vertical velocity components respectively of the
Jjunction point o (see Fig. 1), and where U H0), U (0) and U 5{0) are the axial velocities in
the three bars at point o. Equations (8) are three equations in five velocity variables, and
thus only two of these velocity variables are independent. For example ifU (0) and U H{0)
have been determined, then in accordance with equations (8) U ,(0) must satisfy the com-
patibility equation

U ,(0)+ U5(0)—20,(0) sin 0 = 0 )

and # and b follow directly from equations {8a) and (8b).
Finally, we have the strain displacement relations

s 400 o dU)

T d(v/sin 0) dy

N dD ¥ )

&(y) = d: ) (o
3{V)

= (} oA
&5(y) = sin dy

Using equations (5) and (6) to eliminate the strains from equanons ( 10) and integrating
from y = —!to y = 0 with boundary conditions U (== Uz(-l) = Us(—1) = 0, yields
axial velocities at o

- H & Ay}

U,(0) = csc 9f ?Im(}")(v’) dy {la)
0 g,

N ! R 6_7 fiz{y}

U,0) = f écz(y)(--—i) dy {(11b)

0 O-z,*

N lA 6_3 A3(x)

U4(0) = csc ()J é(,3(y)‘;) dy. {tic)
4] ¢

By replacing the lower limit 0 in equations (11) with variable limit y, we may obtain corre-
sponding expressions for the random processes U (y).

A single stress compatibility equation in the random variable &, may be obtained by
substituting equations (11) into equation (9) with &, and é; eliminated by means of equa-
tions (7), giving

i A Ay} A Raly) A\ raly)
| [ d(y)( -i'i%«-) Ay)( ﬁi} ~2sin? %czm(%—) ] dy=0. (12)
o ¢ -

20, sin @ 2¢.sin 0

Once this integral equation has been solved for 6, , we may obtain 6, and & from equations
(7) U (0) and U,(0) from equations (11a) and (11b), U(0) from equation (9), and finally
#t and ¥ from equations (8a) and (8b).
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As we have stated, the randomness in the material parameters will in general be large.
Accordingly, the use of a perturbation technique which requires that the parameters be
slightly random is precluded in the present case. We are thus faced with a very difficult
nonlinear problem, and it is clear that some simplification is essential. Hence, we shall
in the present analysis take 8 = 45° and make the rather strong assumption that the tem-
perature and imperfection density and accordingly the material parameters are equal
random processes in the three bars, i.e.

A(y) = Ay(y) = A3(y) = Ay) (13a)

Then, we obtain from the above formulation

t — 4. A f(y)
Lol Jo- e

A

1 Ay
B=0 f c(y)(“z) )dy. (14b)

In the special case of material parameters independent of y (i.e. random variables), equations

(14) simplify further to
A O-C
62 = Toye-mvaw (15a)

B,

A \n
2 2 {02
v=Il|=

O,

In the followmg section we make some plaus1ble assumptions about the statistics for
the temperature T(y) and imperfection density N(y), and then develop the statistics of
parameters £(y) and #(y) from functions F and G in equations (4).

3. PROBABILISTIC MODEL

Weassume that the imperfection density N(y)and the temperature T(y)are homogeneous
normal random processes. The first order density functions are then given by

1 2 2
Ji) = J@nay e (Tt (16a)
T 1 2 2
ST = \/(27z)gre_(T_TO) o (16b)

where 0%, 6% are the variances and N, T, are the means. Since the randomness in T(y)
is essentially unrelated to the randomness in N(y), it is reasonable that N(y) and T(y)
be considered independent.

We may demonstrate the plausibility of equation (16a) by considering the following
reasonable model for the introduction of imperfections into a metallic bar during manu-
facture. We are given m imperfections and M metallic bars, where m > M. Our experiment
consists of dividing these imperfections among the bars by “tossing” them into these bars
one at a time and at random, where for the moment we think of each bar as a “box’’ and
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ignore the space coordinate y. We may assume that the trials are independent because
there are a very large number of lattice sites in a particular bar into which an imperfection
may fall. This is a classic problem in probability [6], and the probability density function
for the number of imperfections in a particular bar is very closely approximated by equation
(16a), with o3 = (m/M){1 —1/M) » 1 and N, = m/M. Having thus demonstrated that st
is reasonable to take N as a normal random variable. it is logical to extend the argumen:
further by taking N(y) as a normal random process.

Turning now to the temperature, we may demonstrate the reasonableness of equation
(16b) by constructing a similar experiment. Here we let m equal the number of impulses
of heat that the surrounding medium transmits to the M bars by random impact. By making
assumptions analogous 10 those made above, we may arrive at equation {(16by.

Now we may develop the statistics of parameters &(y) and (v} in accordance with
equations (4).

3(a). Statistics of £4y)
The most widely quoted [5] form of the function F in equations (4) is

E(y) = FI[T(y)] = Ae "1 (171

where 4 and B are taken as temperature and imperfection insensitive material constants.
However, as discussed in [4. 7], equation (17) may be approximated with good accuracy
by the more convenient expression

(1) = 84" {18a;
By} = oo g {18b}

where T, is a constant reference temperature taken here as the mean value, and ¢, is the
value of 2, at T = T, which shall be called here the nominal value.

Since T(y) is homogeneous normal with mean T, [equation (16b)], it follows from equa-
tion (18b) that the nondimensional temperature #(v) is homogeneous normal with mean
zero, i.e. its first order density function is

1

{ sy ‘
St} = e T {19
Vi2mo

(o7

T

where ¢ is the variance of #(y). Rewriting equation {18a) as

24

o

(gv) — il (20}
£ep

&) =

we may then easily show from equations (19) and (20) that the nondimensional parameter
&(y) is a homogeneous random process with first order density function

%,_ e in &)2i2a? Lf{g} {21 )

1= jemeé

where U(&) is the unit step function.
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Equation (21) is the lognormal distribution [8], and its properties are well known. In
particular, the mean E{&}, variance 6% and most probable value max{&} are given by

E{&) =e%? > | (22a)
o2 = e’ (e”*—1) > o2 (22b)
max{&} = e < 1. (22¢)

By considering second order statistics we find the autocovariance
Celn) = e 1) (23)
where C (1) is the autocovariance of #(y) and # = y, —y,. In subsequent work, we will
choose for C () the physically plausible exponential expression
Cn) = aZe” M (24)
where d is the correlation distance. For this case, we will prove in Section 4(a).2 that &(y)
and correspondingly £.(y) are ergodic in the mean.

Finally, one can show that if & is distributed near to its nominal value 1 (valueat T = T;)
it is then approximately normal with mean 1 and variance 62, i.c.

1
&)~ mE =120 1. 25
O oy o, sma (25)
The lognormal distribution for & [equation (21)] and its normal approximation [equation
(25)] are illustrated in Fig. 2 for two values of g,, where the left-hand and lower scales apply
in this case.

3(b). Statistics of A(y)
The exact form Qf the function G(N) in equations (4) is not as well established as the
form of function F(T). However, from the discussion and data given by Garafalo [9], we

! 2 3 n 4 5 [

T T T T T T
a0 o3 20

Oung = 0.2
o = o LOGNORMAL
o 7 Y mmmm—- NORMAL  APPROX. 1.5
fe) fin)
20 1.0
Lo~ g% = 0.4 ~105
o] ooz o

(o] .5 1o 15 20 25

F1G. 2. First order density function of &(y) and A(y).
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conclude that #A(y) decreases in an exponential-like manner as the imperfection densiis
N(y) increases. Furthermore, A(y) — 1 as N(y) - =, ie. a creeping metal tends toward «
Newtonian fluid as the structure tends toward complete disorder. Based on these observi
tions we propose the relation

Ay) = GIN()] = 1 4o BN {26}

where o and f§ are imperfection and temperature insensitive material constants.

The constants « and f§ in equation (26) are conveniently expressed in terms of data at
the mean value N. Equation (26) may then be rewritten as
o [ﬁ{’i\((}’:l = No]

_ N w-) 27

A(y) = 1+(ny,—1)exp -
o

where n, and the negative of the slope n, are nominal values defined as

No = Alf=n, ny = ~dﬁ/dN|&:N0. (28)

Now, N(y) has been assumed to be homogeneous normal with mean N, and its first
order density function is given by equation {16a). It then follows from equation (27) that
i(y) is a homogeneous random process with first order density function

, (ro—1) (=17, [n—1 2} )
- — i [ Utn—1). {29)
fin J 2m)o ynp(n— )exp 2o ynp)? t \ng— 1/ | | tn—1)
This is a lognormal distribution [8] with two parameters (n, and oyng), and # has the
following statistical properties:

E{f} = 1+(np— 1 )GXPHZ"Y@%J > g (30a)
-
132 32
o2 = (ny—1)* exp[((:’vnol))z]{exp[((na‘wnol))z} - 1} > (oyhp)* (30b)
o L7 0
.
max{A} = 1 +(n,— 1)exp[ —((:\ﬁ%i} < Rg. (30¢)
- e

Note that f(n) starts at zero at n = 1, builds up to a peak to the left of the nominal value n,
[equation (30c)], and then tapers in a tail to infinity.
We can easily determine the autocovariance

(o N”E))2 - ong ]
= (ng—1)* - et C —1 31
Cn) = (no—1) EXP[(HO_ )2 exXp (o— 17 M) (1]
where Cy(n) is the autocovariance of N(y). If Cy{n) is chosen as the exponential expression
Culn) = oye " (32)

then analogous to the behavior of &(v) one can show that A(y) is ergodic in the mean [6].
Also, if ayny/(ny—1) is small enough (e.g. <0-2) we may approximate equation (29)
by the normal distribution

, 1 (n—ng)? N
o exp| Y mall (33
) J(@2ms, exp( 202 ) ne—1 sma )

n
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where E{#} = n,and 62 = (cyn,)*. Figure 2 may be used again to illustrate the lognormal
distribution for A [equation (29)] and its normal approximation [equation (33)], where
now the right-hand and upper scales apply.

In the next section, we return to the 3-bar truss problem formulated in Section 2 and
utilize the probabilistic model presented here in conjunction with equations (14) to develop
the statistics of the stresses and velocities.

4. STATISTICAL ANALYSIS OF STRESS AND VELOCITY

In accordance with our development, the random temperature T(y) affects only the
parameter £(y) whereas the random imperfection density N(y) affects only the parameter
A(y). And, T(y) and N(y) are independent. Hence, the “random temperature problem”
[equations (14) plus equations (18)] and the “random imperfection problem’ [equations
(14) plus equation (27)] are uncoupled problems, and we treat them separately.

4(a). Random temperature problem
1. Stress solution. If only the temperature T(y) is random we set A(y) = n,, and since
{4 8(y)dy > 0 equation (14a) yields the following simple solution for stress:

[

2= 1+2("oc—2)/2n0 = 0. (34)

&
Thus, stresses 6,8, and &5 [equations (7)] are all deterministic constants. Had we not
assumed £,;(y) = £.,() = &.5(»), equation (12) would have given the solution

O

13 dy 1/no
1 + 2 - J‘O Ecz(y) - :l
v l:ﬂ) €., (y) dy +[0 &5(y) dy

Now, in accordance with our previous discussion the £,(y) in the 3-bars are homogeneous
random processes with equal ergodic mean, whereupon equation (35) reduces to equation
(34) as I - o0 and again the stresses are deterministic. Thus, we may expect that, even
under the most general of conditions, randomness in temperature will introduce only a
very slight randomness in stress.

6'2=

(35)

2. Velocity solution. Turning now to the velocity, we obtain from equations (14b) [with
A(y) = ny and 8, = o,] and definition (20) the expressions

4 !

(5_0) -1 fo 0)dy (362)
. . |02 o
by = eco(a—c) [ (36b)

where i, is the nominal velocity (value at T = Tp). We see that for the special case &(y) = &
(random variable) the density function f(5/d,) is identical with the first order density func-
tion f(&) [equation (21)], i.e. it is lognormal. In the general case of £(y) a homogeneous
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random process, the determination of the density function of the velocity ratio &z, is very
complicated and shall not be attempted here, However, we shall determine the mean and
variance of /¢,

The mean follows directly from equations (36a) and {22a) and the homogeneity of &(v}as

E{d/i,) = EI&(y)) = %% = i (37

whereupon we see that the mean velocity always exceeds the nominal velocity. 1t may be
shown [6] that the variance is given by integral

L= =M (3]
Oliig = J Jﬂ 2“[) s dn IREY
where the autocovariance Cg(n) must satisfy equation {23). For the purpose of illustration.
we choose equation (24) for the autocovariance of #(y). Substituting this equation into
equation (23) we get

Celn) = e lexpla e 9 — 1] (39
and then evaluating integral (38) we obtain the expression
2 x 2k [ ’
O-L'?[ilo 1 d [ d - 2ktid ‘! .
A Y- 2y Pt (1 —e~2kdy | 40)
o2 e 11 &k k| M o
The following limiting values follow from this result:
P L Oiy
iim Géro 0 m —52 = L 41

aji=0 o} dil=% G2

Physically, the limit d/! — ¢ (perfect correlation) is equivalent to assuming that #(y} and
&(y) are simply random variables, while the limit d/ — 0 (uncorrelated) corresponds with
taking #(y) as white noise. Finally, we note that since &/¢, is the spatial average of &(y)
[equation (36a)] the vanishing of 67, as [ — o verifies our earlier statement that &(v) is
ergodic in the mean when equation (24) is valid.

We note from the above that both the variance and the mean of the velocity ratio 8/¢,
are independent of the parameter n,. In Fig. 3, the variance ratio given by equation (40}

w2 ot { 10! 102
d/4
Fi6. 3. Variance of velocity—random temperature problem.
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has been plotted vs. the distance ratio d/I for several values of ¢,. The velocity is clearly
very sensitive to variations in temperature. For example, consider the typical values
T, = 1000°R, B = 30000°R, o, = 10° [ie. P{970 < T < 1030} = 0-9973] and d/I = 1;
equations (18b) and (22b) then yield 6, = 0-3 and o, = 0-321. And, equations (37) and (40)
yield the values E{}/0,} = 1-046 and 6,;, = 0-240—<learly a significant effect. The results
obtained in this section are in qualitative agreement with the results obtained for a circular
plate in [2].

4(b). Random imperfection problem

1. Stress solution. In this problem we set £,(y) = &, whereupon equation (14a) becomes

1 O,C_é«_z A(y) 1 6’2 a(y) o
Lael 5] oo .

In principle, this integral equation specifies the statistics of random variable 4, in terms
of the statistics of random process 7A(y). However, its analysis is very difficult and some
simplification is desirable. To this end, we will assume that the random process #(y) deviates
by a small amount from a random variable, i.e.

Ay) = A+ei(y) (43)

where 7 is a random variable, ¥(y) is a random process and ¢ is a small parameter. Note
that since 7 is not taken to be slightly random, equation (43) does not imply that A(y) is
slightly random.

We may now use ¢ as a perturbation parameter in the analysis of equation (42), and
accordingly we expand the stress in a perturbation series

62 _ & A 2a

— =8+e5;+e"5,+ .. .. (44)
O-L‘

Inserting equations (43) and (44) into equation (42), expanding the integrand in a Taylor

series in ¢, and then grouping terms of equal order, we obtain a sequence of equations which

may be solved successively for §,, 3, 3,,.... The result up to order £ is given as

1 (In 2)2@- 2028 [T oL
= € 2 *J\ W(y)dy
0

62
6, 1420 DT VR @22
(In 2) In[2(1 + 2~ 2282 ol
+82<r‘13(1 2GR G 22R | ] J;) )% dy

_(n2){{1 427227 A In(1 + 29722 — 1]+ In 2}2‘ﬁ‘2)/2ﬁ[1 f 50) dy]2> (45)

fl3(1 +2(ﬁ—2)/2ﬁ)3 7

We have indicated previously that if N(y) is a homogeneous random process with an
exponential-type autocorrelation, then f(y) is a homogeneous random process which is
ergodic in the mean. Assuming further that E{A(y)} = E{A} we obtain for  » oo the result
E{3y)} = (1/D f, (y) dy = 0, and equation (45) simplifies to

1 (10 2) In[2(1 4 26~ 22ay20
T | 4262z & A3(1 + 20~ D2nyZy D7z o2 (46)

0

Q>

<
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where o2 is the variance of #(y) when #i(y) is taken to be ergodic in the autocorrelation.
Given that 7A(y) deviates by order ¢ from the random variable 7, equation {46) indicates
that the stress &, deviates by order ¢? from the solution for A(y) = /. Hence. it appears
that an analysis of the special case Ai(y) = / will yield reasonably accurate statistical infor-
mation about &,. In the remainder of this section we will confine our attention to this
special case, for which we set ¢ = 0 in equation (46) and obtain
- (7‘, P
e TRt 471
in agreement with equation (15a).
For convenience, we rewrite equation {(47) in nondimensional form as

¢

g(ﬁo)

oan 1 o0 20 (48)
where the nominal stress g, and the constant g(n,) are given by
O, (no— 2)/2n
G0 = —— glng) = 142007 2)i=no, (49)

glng)’
Given that 7 is lognormal [equation (29)], the density function for &,/0,, follows from
equation (48) as

/ 02| _ glng) o
" \020 (62/0350) [g(no)—(0'2/620)]0',~vn'0\/(27r) In2
[1+(no— DX e ¥ fa,  gln) o, glng) |\
. s A U § § P 0
. e U 20 142 U e 1+1/\/2 (50)
where
[ In2 J _y
X = In {\/(2)(0'2/020)/[g(n0)—(02/020)]} . qa= o~ U - {s1)
ny—1 \/(2)0'1\1”0

Equation (50) has been plotted in Fig. 4 (solid lines) for typical values of n, and ayn, .
The lower cutoff on stress [a,/0,, = g(no)/(1+/2)] corresponds with n — 20, while the

50 T T T T T T T
4
] NG = 0.2 Mo = 3
a0k 0 LOGNORMAL
\ ______ n NORMAL APPROX
s0k X | (880 ¢ -T—<1249)

(&)

20

02/ 0z
FiG. 4. Density function of &,/0,,—random imperfection problem.
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upper cutoff [0,/0,0) = g(no)/(1+1/4/2)] corresponds with n = 1. At both of these points
f(0,/050) equals zero. Note that although the density function for 7 is asymmetric, the
density function for &,/a,, is almost symmetric with respect to ,/a,, = 1. In fact, it is
exactly symmetric when n, = 2.

Due to the complexity of equation (50), we were not able to obtain closed form expres-
sions for the mean and standard deviation of &,/a,,. However, these statistical properties
are easily obtained by numerical integration, and typical curves are shown in Fig. 5. Note

2 T T T T T T T T
r /" 0Onflg = 0.2 n  tognormal
osh // /e —OnNg = 0.5 Results by Numerical Integration g
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/ T 4
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Fi1G. 5. Mean and standard deviation of 6,/¢,,—random imperfection problem.

that, for values of the material parameters within the range of practical interest, E{¢,/d,,}
is very close to unity and o,,,, is very small. For example, consider the rather extreme
values oy = 10°cm™ 2, ny =3 and n, = 0-8x 1072 cm?; then equations (30) yield
E{a} = 3-167 and ¢, = 0902, and Fig. 5 yields E{8,/5,,} = 1002 and g,,,,, = 0-032.
Thus, although the creep power A may fluctuate greatly as a result of random fluctuations
in the imperfection density N(y), the stress ratio &,/ ,, is almost insensitive to such fluctua-
tions. We conclude that in the random imperfection problem the stress may be assumed
to be deterministic with little loss of accuracy.

For small enough values of ayng/(no — 1) (e.g. <0-2),the above analysis may be simplified.
In such cases we may approximate the lognormal distribution for 4 [equation (29)] by a
normal distribution [equation (33)]. We then obtain in place of equation (50) the approxi-
mate expression

il ) N glng)In 2
020/ kA o2 JQ)(o3/030) | 2
\/(27[)0"( 0'20) l:g(n()) (0'_20) :I l:ln(g(no) - (02/020)) :l
—1 In2 2

, nnormal. (52)

— —n
EEZ ( V2)(02/030) ) '

8(no) —(0,/030)
This equation has also been plotted in Fig. 4 (dashed lines). Note that the approximate
curve is very close to the exact curve for ayny/(no — 1) = 0-1, whereas a sizable asymmetric
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error occurs for ayny/(ng—1) = 0-4. The interval outside of g(ny)/(1 +/2) < a5/, =
g(ne)/(1+1/4/2) has no physical meaning, and portions of the approximate curves in this
region should be ignored.

Finally, after expanding equation (48) in a Taylor series about n,, we may obtain
approximate closed form expressions for the statistical moments (see [6]}. Again assuming
anhg/(n, — 1) small, we may truncate this series after the second order term and utilize the
statistical moments of the normal approximation to 7 to obtain

E{ﬁg-} ~ 1 + g lﬂo(ln 2)[2/”0g(f()) _(in z)g(nO)]Gr% {i}é”
T30 \/’(z)nog(no) '
/(2)(27 1) (In 2)
Ga’z,’d‘m ~ \/( )( b3 )( ? )G" {Sjb}
naglng)
where
glng) = 1— 200~ 2i2m (54)

Table 1 gives several values of the statistical moments as calculated by numerical
integration (Fig. 5) and by the approximate Taylor series formulas [equations (53)] with
oyty = 0-5. Note that é,/0,, becomes less random as n, increases.

TaBLE |. MEAN AND STANDARD DEVIATION OF ./60,,, oyny = 0-5

E{63/030) Ogaiaz0
Numerical Taylor Numerical Taylor
ne integration series integration series
3 1-00085 1-00342 002019 002037
S 1-00029 1-00077 000766 000765
7 100012 1-00029 000398 000397
10 1-00004 1-00010 000198 000197

2. Velocity solution. Considering the velocity now, we obtain from equations (14b) [with
2{y) = é.,)] in conjunction with equations (46) and (49) the relations

B 1 |

(;5;) — [ sy (55a)

by = gco(i@)nol (55b)
GC

$0) = {HIAG) sgtnor® (550)

where 0, is the nominal velocity and H[A(y)] represents the right hand side of equation (46).
Here, we have again assumed that A(y) deviates by a small amount {from a random variable
[equation (43)].
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Equation (55a) is similar in form to equation (36a) and proceeding in the same manner
we obtain for the mean and variance of 9/, the expressions

E{b/io} = E{$(y)} (56a)

1 2 n
o= 7 f (1-5) Cyln) dn (56b)
Q

where Cyn) is the autocovariance of $(y). After specifying the autocovariance of N(y)
{e.g. equation (32)], one may evaluate the autocovariance of #A(y) from equation (31), and
then use equations (43), (46) and (55c¢) to find C (). Equations (56) then yield the mean and
the variance of the velocity.

The procedure described above will in general involve extensive numerical calculations.
Rather than pursue this course further, we will restrict our attention to the special case
N(y)and A(y)equal to random variables. As we learned in the random temperature problem,
this is a conservative assumption since it yields an upper bound on the variance [see equa-
tions (41)]. Equations (46) and (51) yield in this case

glng)™

ﬁ"+ - 2)/2;.17. (57)

é
Uo

which agrees with equation (14b).
Given that 7 is lognormal [equation (29)], we may find the probability density function of

3/t from equation (57). However, it is obtained in implicit form since equation (57) may not
be inverted in closed form. The result is

(o=, [n—117?
7] - ol 1]

B , SN[ g 4 a2y LEN
0 \/(2n)aNno(n—1)(l}—0) [:ln(1+2"' 2 )+m§‘3>/7)] — heti)

b v glng)™
' [U(") - U(z:-_a‘ it wzﬂ G

where n = h(t/0,) is the root of the expression

AL (n=2)2mm _ 1 _ '
g(no)""[l +2 "—-1=0. (59)
The lower cutoff [¢/6, = 0] corresponds with n — co, while the upper cutoff [/5, = g(n,)/
(1+1/,/2)] corresponds with n = 1.

Equation (58) has been plotted in Fig. 6 (solid lines). The mean and the standard
deviation are readily obtained by numerical integration, and some typical curves are given
in Fig. 7. The velocity is clearly very sensitive to variations in imperfection density. For
example, considering again the values oyn, = 0-8 and n, = 3, we obtain from Fig. 7
E{}/p,} = 1-094 and Gys, = 0-656. Furthermore, we note from Fig. 7 that the curves level
off rapidly and show little dependence on n, in the range where experimental values are
most likely to fall. Also, in this range the mean velocity exceeds the nominal velocity.
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Fii;. 6. Density function of £:¢, ~-random imperfection problem.

As previously demonstrated, we may approximate the lognormal distribution for 7 by a
normal distribution when oynp/{n, — 1) < 0-2. Equation (58) is then replaced by the
approximate implicit relation

o (gl
RN L
' tq - H v yE - 2)2n h’! 2
v\;{2ﬂ:)rr,, *;' ln(i + .2 Y od e REIVE "N

By il +j'"-—i}'z"? 2 i?zn)

!

. anormal  (60)
J %n = WP gt

where n = h(/i,) is defined by equation (59). This simplified equation has been plotted
in Fig. 6 (dashed lines). Again we ignore the interval outside of 0 < 0/6y < g(ng) A1 + 1.2}

G .
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F1G. 7. Mean and standard deviation of #/#, - random imperfection problem.
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Although equation (60) is simpler than equation (58), it is still in an inconvenient implicit
form. An alternate simplification may be obtained by utilizing the fact that &, is only slightly
random. Thus in equation (48) we assume that ¢, is deterministic and equal to ¢,,, where-
upon the quantity 1+ 2@~ 2/2% i5 also deterministic and equal to g(n,). Equation (57) then
simplifies to

b )
— = glne)* ™" {61)
Uy

This equation is easily inverted, and given that # is lognormal we obtain the density function
in explicit form as

s ( 0 ) N 1 ny—1
Bo|  (8/6o) In[g(no)] \/(2mlayn {no—1—n(5/vo)/Inlg(no)]}

(no—1) 1 In(ifoe) | ]2 5 p N
P {"2(@:@5)2[1“(1_%-—1 1n[g(n0)]” MU(%)“U (E'O”Wg(no) ‘”

o, deterministic.  (62)

This equation has also been plotted in Fig. 6 (dash—dot lines). Since é,/0,, becomes less
random as n, increases, equation (62) becomes more accurate with greater values of n,.

Finally, we obtain approximate Taylor series formulas for the mean and variance.
Thus, assuming oyhp/(ne— 1) to be small we expand equation (57) in a truncated Taylor
series about ny and utilize the statistical moments for the normal approximation. By actual
numerical evaluation we find that the result shows an extremely small dependence on ng,
and so a considerable simplification is obtained with negligible loss in accuracy by letting
ny — o0. Retaining terms up to the fourth order we obtain the result

F{Z)} ~ 1+302[In(/(2) - D2 + 362 [In(\/(2)— 1)]* (63a)
o
034, ~ o2[In(/(2)~ 1)]* + 305 [In(/(2)— D]*. (63b)

Table 2 gives a comparison of the statistical moments as obtained by numerical integration
{(Fig. 7)and by approximate formulas (63) for oyng = 0-5. Note that the approximate values
are rather crude for n, = 3 [oyn/(n, — 1) = 0-25], but they improve rapidly as n, increases.

TABLE 2. MEAN AND STANDARD DEVIATION OF /8y, oyny = 0-5

E{B/o} Ciig
Numerical Taylor Numerical Taylor
Hy integration series integration series
3 103893 1-10182 0-42548 0-50077
5 1-06823 1-10182 0-45880 0.50077
7 107894 1-10182 047355 050077
10 108637 1-10182 0-48462 0-50077
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5. SUMMARY OF RESULTS

We have presented significant statistical results pertaining to steady creep in a 3-bar
truss, where the load is deterministic while the material parameters ¢, and » are described
in a stochastic sense. The randomness in these parameters results from randomness in the
temperature and imperfection density, which have been assumed to be independent
homogeneous normal random processes that are equal in the three bars. The problem has
been separated into two uncoupled parts—the “random temperature problem™ and the
“random imperfection problem”. In the random temperature problem only 7 is random,
whereas in the random imperfection problem only n is random. It has been shown that both
of these parameters are described by lognormal probability density functions. Experimental
evidence indicates that large fluctuations in both parameters are to be expected. and this
fact has guided the analysis.

The statistics of the stress and velocity have been found for the two problems. in the
random temperature problem, the stress is deterministic, whereas the velocity is very
sensitive to variations in temperature. We find that the mean velocity always exceeds the
nominal velocity, and that the statistics of the velocity ratio (velocity divided by nominal
velocity) are independent of n. Similar results are found in the random imperfection problem.
Here the stress is found to be only very slightly random, whereas the velocity is again found
to be highly random as the imperfection density fluctuates. For values of the parameters of
greatest practical interest, we find that the mean velocity again exceeds the nominal
velocity and that the statistics of the velocity ratio exhibits only a minor dependence on the
nominal value of a. In both problems, simple and useful formulas are presented for the
statistical properties of the stress and velocity.
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AGcrpakt-—/laéTes ananus kacaroumica yddexra SeMOPRAOHHEIX HAPAMETPOB MATEPUANA | CTO BIIMAHMS
HA [OCTOSHHYIO O/3YHECTh B TpEXcTepxenesoi depme.
IMapamerp He3mopaaOYROCTH BOOBWE GONBLIIOH. .
1o npusoantes Gnaroaaps GECHOPALIHOCTH MO OTHOWEHHIO TEMIEPATY P I IIOTHOCTH HETOYHOCTEN.
Jar0oTca BHAMHTHYECKUE M 4YMCACHHBIE PE3Y/ILTATHL CTATHYECKHX CBOWCTB NApameTpoB matepuana
CBOMCTE HANPKEHNUH 1 CKOPOCTH. YKa3aHOo, 4T0 GECHOPAROUHOCTD B APAMETPAX ByneT ¢ oaHOH CTOPOHD!
BBLI3LIBATH OYEHBb MAJYIO BECHOPAAOHHOCTE b MAHPAIOCEMHUAX, HO ¢ APYTOH CTOPOHBL OHEHD HAMHTENBLHYIO
O OTHOMEHUK K CKOPOCTH.



